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LETTER TO THE EDITOR 

Determination of pure spin state from three measurements 
. .  

I D Ivanovic 
Faculty of Physics, University of Belgrade, POB 550, 11000 Belgrade, Yugoslavia 

Received 24 February 1993 

Abstract We show that the state determination of a pure spin store can be obtained from 
the results of three Stern-Gerlach type measurements. If the initial state is m = 0 state, the 
selection of measurements cannot be made in advance. 

The problem of state determination of a pure state in spin space has recently been 
discussed in several papers, e.g. [ 1,2]. The aim of this letter is to consider determination 
of apure spin state which is a relatively simple task, when comparedto the determination 
of an arbitrary pure state [1,2] or an arbitrary mixed state [3,4] in spin space. We 
show that state determination procedure for a pure spin state consists of three spin 
component measurements. The first measurement is an arbitrary one (concerning the 
orientation) while the following ones must be chosen on the basis of results of previous 
ones. A prearranged set of measurements may fail to give su56ient data for a state 
determination. 

To start with, by a pure spin state for spin j we will assume an eigenstate of operator 
J. = n . J =  nxJx+n,Jy+n,J, where In[ = 1, in a complex (2j+l)-dimensional space. 
Accordingly, any state can be labelled by the orientation n and the eigenvalue of J., 
m; Jnln, m)= mln, m) where - j G m G j .  Starting from some basis set of  vectors, e.g. 
the set of eigenvectors of J,, Iz, m) all other spin pure states can be obtained by applying 
rotation matrix D")(a, p, y) to the chosen set. The rest of the pure states are non-spin 
states and their interpretation is given in [5]. 

We assume an ideal state determination: the ensemble prepared in an unknown 
pure spin state is available in a sufficient number of identical replicas. On each replica 
a measurement by means of a standard Stem-Gerlach measurement is performed and 
by the measurement result we assume the probability  distribution obtained from the 
measurement 

Pj.Pj-I....P-j. 

Also, the measurement result {pm}z12 must coincide with probabilities obtained from 
calculations. 

The determination is completed when one is able to determine the orientation of 
the initial preparation no and the eigenvalue of J,, mo. 

Let n,  denote the orientation of the first measurement performed, that of J , ,  and 
let {PE)}:;? be the result of the measurement.~Obviously, PE'= (d!&&))* where 
&~,,,,(p1) = [D(')(O, P I ,  O)j,,,m'and ,bl =L(n, ,  a).  In particular [6]  
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and 

Using the fact that 

VI)= mo cos(PI) 

from (1)-(3), when (J , )#O,  one obtains an equation for mo 

and an equation for PI 

where (4) and (5) are valid if mo # 0. 
As a consequence, from a single measurement (if (J , )  # 0) one may infer the value 

of m, and PI .  The knowledge of PI reduces the set of allowed orientations for no to. 
a cone Con(n,, PI)  with the apex at the origin, n, as the axis, and 6 ,  as the half-angle. 
Reorientation of an axis (i.e. change of Ji + -4)  allows one to consider only positive 
mo and consequently only the 'upper' parts of the cones in question. This 'upper' part 
of the cone we denote by Con+(n,, PI). 

From the next measurement, e.g. along n,, one obtains pz and no€ 
(Con'(n,,p,)nCon+(n2,j?,)). The apex of all cones we are dealing with is at the 
origin. Then one should choose between, at most two, remaining orientations for no 
and this can be made after the third measurement made along any n, which does not 
belong to the plane defined by (n,, n,). 

A slightly different approach must be made for integer j in the case when (JI) = 0. 
Such a result may occur for two reasons only: either the initial state is an m, = 0 state 
with an arbitrary no or the initial state's m, is arbitrary but L(n,,  n,) = ~ / 2 .  In both 
cases the probability distribution is a symmetrical one, i.e. pm =p-, .  

What follows is the proof that,.except for (j=l), it is possible to differentiate 
between a probability distribution {p0 . , (P)}  obtained from some In,,, 0) and a probabil- 
ity distribution { ~ , ~ , ~ ( e / 2 ) }  from some In,, m,) when L(no ,  n,) = e/Z.  In fact we will 
show that if two first probabilities are equal, i.e. 

PO. j (P)  =PmO.i(" ~ P O , j - , ( P )  = P " t & d d a  (6) 
then the third pair must be different, i.e. pOJ- , (p)  # p m O J - , ( e / 2 ) .  

The following equations are a consequence of (6): 
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Introduction of the particular values in (S), rearrangement, squaring and inserting 
the values from (7) one obtains that po.j-~(p)=pmo.j-2(~/2) if, and only if, the next 
four equations can be solved in m,: 

m$tm$=jZ( j -  l)(j-1* I). (9) 

It is easy to check that (9) has no solutions satisfying -j s mo< j except for j =  1 when 
the solution is m, = *l. The solution for the j = 1 case will be left until the conclusion 
of this letter while for all other cases it is possible to infer value of mo forthe initial state. 

Determination of no for an mo= 0 state is slightly different from the determination 
of an m, f 0 state due to the fact that reorientation of axes does not simplify the 
problem and we will show that for every prearranged set of three measurements (and 
orientations) at least a pair of pure spin states exists which cannot be differentiated 
by the chosen set of three measurements. 

For a given axis, e.g. n, and angle p, , obtained from a measurement assuming that 
the initial state is an m,=O pure spin state admissible no should lie on a.proper cone 
Con(n,, p). After the second measurement, if it is chosen before the result of the first 
measurement is known it may occur that Con(n,, PI) n Con(n,, p z )  contains 4 admiss- 
ible orientations for the unknown no. An unfortunate a priori choice of thud measure- 
ment may discard a pair of orientations but may be unable to decide between the 
remaining two orientations. Such a case occurs, for example, if one tries to detemine 
an mo=O state from the results of measurements of Jx, J,., J,; when four orientations 
may remain. 

We will now show how to find a pair of states which cannot be differentiated by 
a chosen set of three measurements. Instead of solving the set of equations we will 
give a proof using ody  elementary geometry. 

Consider a unit sphere in three-dimensional space and it's projection into the plane 
defined~by n, and n, (figure 1). Projection of the intersections of a cone with the sphere 
is represented by two parallel lines equidistant .from the centre of the projection. 
Projections of cone intersections are orthogonal to the corresponding axis. Intersection 

Figore 1. Projection of three predetermined axes and the corresponding pair of pure states 
giving identical probability distributions. 
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between two such pairs of parallel lines makes a rhomboid. Now, every diagonal of 
the rhomboid is a projection of two admissible orientations for no being the intersection 
of two cones. If third measurement should fail in a complete state determination it’s 
projection must be orthogonal to one of the rhomboid’s diagonals. In that case one 
can construct a cone around n3 which will intersect two first cones along two lines 
which will be possible orientations for no. 

The proof is now obvious; given three orientations one should draw a line orthogonal 
to the projection of the third orientation through the origin. This line is then one of 
the diagonals of the rhomboid one still has to construct. Choosing different values for 
p1 and pz it is always possible to construct a family of desired rhomboids. In the case 
when projection of the third orientation lies along one of two first orientations the 
rhomboid will reduce to a line while the corresponding angle is 7r/2. 

This also gives the answer to the question: ‘How to perform a pure spin state 
determination from three measurements for m, = 0 state? The answer is: ‘Next measure- 
ment should be chosen on the basis, of the results of the previous measurement.’ The 
following is an example. If the first measurement along n, resulted in p1 the second 
measurement should be made along n, such that L ( n , ,  n2) = 7r/2-pI. This ascertains 
only two possible orientations for no. The thud measurement should be made along 
one of the possible orientations for nlwhich will accomplish state determination. 

Instead of a conclusion we will return to the j = 1 case. Theprobability distribution 
which hides the nature of the init,ial state is {i, 4, $} i.e. either p = ?r/Z and mo = +1 
or p = 7r/4 and mo = 0. The second measurement should be made along R ,  L(n,, nz) = 
7r/4. If the probability distribution is again the same one, the third measurement should 
be made along n3L(n3, n,) = m/4, L ( n 3 ,  nz) = 7r/4 which will fulfill the ‘desired task. 

Finally, it is obvious that Stern-Gerlach type of measurements are redundant for 
the determination of m, # 0 states; only mean values of Jj are necessary. For an mo = 0 
state, again one does not need a complete probability distribution; only three prob- 
abilities from the first measurement are necessary to recognize it’s nature and from 
other probability distributions one needs two probabilities p*j(p2) andp,.(p3) obtained 
from properly chosen measurements. 
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